@NilsBerglund
  @NilsBerglund
Nils Berglund | Waves of two different frequencies crossing a randomized square lattice @NilsBerglund | Uploaded June 2024 | Updated October 2024, 1 hour ago.
This simulation is similar to the one shown in the video youtu.be/pObtx2xmZDA , but instead of being on a regular square lattice, the position of the scatterers has been slightly randomized. The radius of the scatterers is also random. This has a dramatic effect on the waves, which have much more trouble crossing the lattice, a phenomenon related to Anderson localization.
The frequency of the lower source is three times the frequency of the upper one. The resulting wavelengths are such that the open intervals in the grating are roughly between both wavelengths. As a result, waves of the lower source pass the grating a bit more easily, as can be best seen on the energy plot.
This video has two parts, showing the same evolution with two different color gradients:
Wave height: 0:00
Averaged wave energy: 1:27
In the first part, the color hue depends on the height of the wave. In the second part, it depends on the energy of the wave, averaged over a sliding time window. The contrast has been enhanced by a shading procedure, similar to the one I have used on videos of reaction-diffusion equations. The process is to compute the normal vector to a surface in 3D that would be obtained by using the third dimension to represent the field, and then to make the luminosity depend on the angle between the normal vector and a fixed direction.
There are absorbing boundary conditions on the borders of the simulated rectangle. The display at the right shows a time-averaged version of the signal near the right boundary of the simulated rectangular area. More precisely, it shows the square root of an average of squares of the respective field value (wave height or energy).

Render time: 34 minutes 25 seconds
Compression: crf 23
Color scheme: Part 1 - Viridis by Nathaniel J. Smith, Stefan van der Walt and Eric Firing
Part 2 - Inferno by Nathaniel J. Smith and Stefan van der Walt
github.com/BIDS/colormap

Music: "Where She Walks" by Everet Almond

See also https://images.math.cnrs.fr/Des-ondes-dans-mon-billard-partie-I.html for more explanations (in French) on a few previous simulations of wave equations.

The simulation solves the wave equation by discretization. The algorithm is adapted from the paper hplgit.github.io/fdm-book/doc/pub/wave/pdf/wave-4print.pdf
C code: github.com/nilsberglund-orleans/YouTube-simulations
https://www.idpoisson.fr/berglund/software.html
Many thanks to Marco Mancini and Julian Kauth for helping me to accelerate my code!

#wave #diffraction #grating
Waves of two different frequencies crossing a randomized square latticeSpeed and vorticity of a fluid on a rotating sphereSorting heptagons with a linear sieveAn asteroid impact in the Indian Ocean, with tsunami-induced floodingCoagulating falling squaresShallow water flowing over an immersed dodecahedronExciting spirals in a circle with sixteen out of phase sourcesTriangles on two conveyor beltsFalling pentagons pretending to be bestagonsMartian weather #mars #terraformingmarsThe rock-paper-scissors-lizard-Spock equation on the sphere, with improved behavior at the polesSmaller interacting kites-and-darts-type molecules

Waves of two different frequencies crossing a randomized square lattice @NilsBerglund

SHARE TO X SHARE TO REDDIT SHARE TO FACEBOOK WALLPAPER