@NilsBerglund
  @NilsBerglund
Nils Berglund | Waves escaping a ring of obstacles: Poisson disc grid @NilsBerglund | Uploaded July 2024 | Updated October 2024, 8 minutes ago.
This is a simulation of waves originating from a point source crossing a set of circular obstacles placed randomly in an annular region. The centers of obstacles follow a so-called Poisson disc process, which is the most random distribution that keeps a minimal distance between the points.
This video has two parts, showing the same evolution with two different color gradients:
Averaged wave energy: 0:00
Wave height: 1:11
In the first part, the color hue depends on the energy of the wave, averaged over a sliding time window. In the second part, it depends on the height of the wave. The contrast has been enhanced by a shading procedure, similar to the one I have used on videos of reaction-diffusion equations. The process is to compute the normal vector to a surface in 3D that would be obtained by using the third dimension to represent the field, and then to make the luminosity depend on the angle between the normal vector and a fixed direction.
The color in the central region has been brightened to white, because the waves tend to make large-amplitude oscillations there, which would not be very pleasant to watch.
There are absorbing boundary conditions on the borders of the simulated rectangle. The display at the right shows a time-averaged version of the signal near the right boundary of the simulated rectangular area. More precisely, it shows the square root of an average of squares of the respective field value (wave height or energy).

Render time: 32 minutes 37 seconds
Compression: crf 23
Color scheme: Part 1 - Magma by Nathaniel J. Smith and Stefan van der Walt
github.com/BIDS/colormap
Part 2 - Twilight by Bastian Bechtold
github.com/bastibe/twilight

Music: The Great Unknown by Audionautix is licensed under a Creative Commons Attribution 4.0 licence. creativecommons.org/licenses/by/4.0/Artist: audionautix.com
See also
https://images.math.cnrs.fr/des-ondes-dans-mon-billard-partie-i/ for more explanations (in French) on a few previous simulations of wave equations.

The simulation solves the wave equation by discretization. The algorithm is adapted from the paper hplgit.github.io/fdm-book/doc/pub/wave/pdf/wave-4print.pdf
C code: github.com/nilsberglund-orleans/YouTube-simulations
https://www.idpoisson.fr/berglund/software.html
Many thanks to Marco Mancini and Julian Kauth for helping me to accelerate my code!

#wave #diffraction
Waves escaping a ring of obstacles: Poisson disc gridNeutral soap and water with increasing force constantBloopers15: This is not DNAWeather on the Earth with a random initial stateWhat would a superluminal light source look like in a non-relativistic universe?Falling sticksCherenkov radiation of a slightly faster particleVideo #1200: Weather on the EarthWaves escaping a ring of obstacles: Hex gridSorting triangles with rattling sievesTrying to model tides with a shallow water equationCherenkov radiation, with corrected refractive index

Waves escaping a ring of obstacles: Poisson disc grid @NilsBerglund

SHARE TO X SHARE TO REDDIT SHARE TO FACEBOOK WALLPAPER