@NilsBerglund
  @NilsBerglund
Nils Berglund | A conveyor belt with shovels @NilsBerglund | Uploaded August 2024 | Updated October 2024, 1 hour ago.
In this new variant of a conveyor belt simulation, I have added "shovels" to the belt (or whatever you call those things). The conveyor belt effect results from a combination of two factors: the shovels, and the fact that the segments forming the belt exert a tangential force on the polygons, in addition to the normal force. The tangential force is proportional to the difference between the tangential speed of the polygon and the speed of the belt.
To compute the force and torque of polygon j on polygon i, the code computes the distance of each vertex of polygon j to the faces of polygon i. If this distance is smaller than a threshold, the force increases linearly with a large spring constant. In addition, radial forces between the vertices of the polygons have been added, whenever a vertex of polygon j is not on a perpendicular to a face of polygon i. This is important, because otherwise triangles can approach each other from the vertices, and when one vertex moves sideways, it is suddenly strongly accelerated, causing numerical instability. A weak Lennard-Jones interaction between polygons has been added, as it seems to increase numerical stability.
Unlike in some previous videos involving interacting polygons, there is no thermostat in this simulation. Instead, friction forces (both linear and angular) have been added for numerical stability. In addition, the particles are subject to a gravitational force directed downwards.
This simulation has two parts, showing the evolution with two different color gradients:
Initial x position: 0:00
Velocity: 3:04
In the first part, the particles' color depends on their initial x position. This allows to get a sense of how particles are mixed while falling through the funnel. In the second part, the due depends on the direction in which the particles are moving, while the luminosity depends on their speed. Both quantities are averaged over a time interval.
To save on computation time, particles are placed into a "hash grid", each cell of which contains between 3 and 10 particles. Then only the influence of other particles in the same or neighboring cells is taken into account for each particle.
The Lennard-Jones potential is strongly repulsive at short distance, and mildly attracting at long distance. It is widely used as a simple yet realistic model for the motion of electrically neutral molecules. The force results from the repulsion between electrons due to Pauli's exclusion principle, while the attractive part is a more subtle effect appearing in a multipole expansion. For more details, see en.wikipedia.org/wiki/Lennard-Jones_potential

Render time: 26 minutes 7 seconds
Compression: crf 23
Color scheme: Part 1 - Turbo, by Anton Mikhailov
gist.github.com/mikhailov-work/6a308c20e494d9e0ccc29036b28faa7a
Part 2 - Twilight by Bastian Bechtold
github.com/bastibe/twilight

Music: Fig Leaf Times Two by Kevin MacLeod is licensed under a Creative Commons Attribution 4.0 licence. creativecommons.org/licenses/by/4.0/Source: incompetech.com/music/royalty-free/index.html?isrc=USUAN1200096Artist: incompetech.com

Current version of the C code used to make these animations:
github.com/nilsberglund-orleans/YouTube-simulations
https://www.idpoisson.fr/berglund/software.html
Some outreach articles on mathematics:
https://images.math.cnrs.fr/auteurs/nils-berglund/
(in French, some with a Spanish translation)

#molecular_dynamics #polygons #sand
A conveyor belt with shovelsCreating rotating waves in a circle with ten angled secondary cavitiesAn asteroid impact in the North Atlantic Ocean, with tsunami-induced floodingFoam bath: Coagulating pentagonal moleculesA laminar flow over an immersed icosahedronThis is not Tetris: Interacting falling squaresA magnetron-shaped resonator with longer wavelengthWinnowing 2: Separating triangles by size using windVideo #1300: What if the Earths oceans were much shallower?Trajectories in a mass spectrometerA laminar flow over an immersed octahedronThe Allen-Cahn equation on the sphere, with improved behavior at the poles

A conveyor belt with shovels @NilsBerglund

SHARE TO X SHARE TO REDDIT SHARE TO FACEBOOK WALLPAPER